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THE NULL SPACE PROBLEM II. ALGORITHMS*

THOMAS F. COLEMANt AND ALEX POTHENj}

Abstract. The null space problem is that of finding a sparsest basis for the null space (null basis) of an
underdetermined matrix. This problem was shown to be NP-hard in Coleman and Pothen (this Journal, 7
(1986), pp. 527-537). In this paper we develop heuristic algorithms to find sparse null bases. A basis is computed
by columns, i.e., by finding a null vector linearly independent of those previously obtained. The algorithms to
compute null vectors have two phases. In the first combinatorial phase, a minimal dependent set of columns
is identified by finding a matching in the bipartite graph of the matrix. In the second numerical phase, nonzero
coefficients in the null vector are computed from this dependent set.

We have designed two algorithms: the first computes a fundamental basis (one with an embedded identity
matrix), and the other, a triangular basis (one with an upper triangular matrix). We describe implementations
of our algorithms and provide computational results on several large sparse constraint matrices from linear
programs. Both algorithms find null bases which are quite sparse, have low running times, and require small
intermediate storage. The triangular algorithm finds sparser bases at the expense of greater running times. We
believe that this algorithm is an attractive candidate for large sparse null basis computations.

Key words. null basis, null space, sparse matrix, bipartite graph, matching, linear programming, nonlinear
programming
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1. Introduction. Currently successive quadratic programming is the most popular
method to solve constrained nonlinear optimization problems. The quadratic program-
ming subproblems are often solved by numerically stable null space algorithms. Thus
designing efficient null space algorithms for large scale optimization problems is an area
of intense research effort at present. One concern is that these algorithms require a sparse
representation of the null space of the constraint matrix.

Let A be a ¢ X n matrix of rank z. The Null Space Problem (NSP) (Pothen (1984),
Coleman and Pothen (1986a)) is to find a basis N, with the fewest nonzeros, for the null
space of A. For brevity, a basis for the null space will be called a null basis, and a column
of a null basis will be called a null vector.

Two representations for the null basis N have been used so far in optimization
algorithms. Wolfe (1962) proposed permuting the columns of 4 to obtain a ¢ X ¢ non-
singular matrix M such that 4 = (MU ), so that

1.1 n=("
a.n -(.)

where B = —M ~'U, and I,_, is the (n — f)-dimensional identity matrix. We will call
such a basis a fundamental null basis. An explicit representation of N is one in which the
nonzeros in N are stored. In practice, N is represented implicitly by storing the LU factors
of M, and a matrix-vector product such as Np is computed by solving a system of equations
involving M. In the second representation, an LQ factorization of 4 is computed, and
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the last n — ¢ columns of Q form an orthogonal null basis for A. This scheme is impractical
for large scale problems since Q is likely to be quite dense.

A context in which an explicit representation of the null basis is required concerns
the optimization of a nonlinear function subject to linear constraints. A null space method
demands the matrix N"HN, where H is the current Hessian or an approximation to it.
If a subroutine to compute the gradient of the objective function is available, then it is
possible to obtain a good approximation to HN by »n — ¢ extra gradient evaluations (Gill,
Murray and Wright (1981)), provided N is explicit. If N is explicit, and HN is sparse,
then, in general, many fewer gradient evaluations will be needed if a sparse finite difference
scheme is used (Coleman and Moré (1983), (1984)).

A second context arises from the recent work of Goldfarb and Mehrotra (1985) and
Shanno and Marsten (1985) which extends Karmarkar’s algorithm for linear program-
ming. The crucial computational step in these works is the solution of large sparse linear
least squares problems of the form

DNw=b,

where D is a diagonal matrix, and N is a null basis of the constraint matrix. Both groups
suggest solving the linear systems using pre-conditioned conjugate gradients; however, a
host of pre-conditioning strategies is lost if N is not explicit. For example, diagonal,
incomplete Cholesky, and chordal (Coleman (1986)) pre-conditioners, all require an
explicit null basis N. (Thapa (1984) discusses a variety of pre-conditioners available for
optimization problems: most require explicit matrices.)

Hence, for the rest of this paper, we restrict ourselves to the study of sparse explicit
representations of null bases.

Previous work by others. Recently much work has been done on computing sparse
null bases. The “turnback™ method for computing a null basis with a profile structure
for equilibrium matrices in structural analysis was proposed by Topcu (1979). Kaneko,
Lawo and Thierauf (1982) interpreted this algorithm from a matrix factorization point
of view. Berry, Heath, Kaneko, Lawo, Plemmons and Ward (1985) refined this algorithm,
implemented it using profile data structures, and tested it on several structural problems.
Berry and Plemmons (1985) have implemented this algorithm on a HEP multiprocessor.

The turnback algorithm computes a QR factorization of A to identify a set of
(n — 1) start columns. These are columns which are identified as linearly dependent in
the factorization. Hence there is a null vector containing a start column and columns
numbered lower than it in the matrix. Each null vector is computed by an algorithm
which maintains a set of active columns, initially containing only a start column. Lower
numbered columns are added to the active set, one by one, and a OR factorization of
the active set is maintained. When the active set becomes dependent, the columns cor-
respond to the nonzero components of a null vector. If the dependence involves the start
column, the null vector is accepted. If not, the dependent column is rejected from the
active set, and the process continued.

Null bases obtained by turnback are not fundamental; they have an embedded
upper triangular matrix U, _, of dimension (n — ) with nonzero diagonal elements. Thus

2 N= B
(1.2) —(Un—t)’

and we call such bases triangular null bases.
Gilbert and Heath (1987) have implemented several algorithms to compute sparse
null bases. One of these is the turnback algorithm using general sparse data structures
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from Sparspak (George and Liu (1981)). Another is a matching based algorithm that
computes triangular bases; we discuss this algorithm in § 4 of this paper.

Previous work by the authors. NSP was formulated in Coleman and Pothen (1986a).
We briefly summarize definitions and major results from that paper that will be use-
ful here.

A null vector of A can be obtained from a linearly dependent set of columns. We
call such a set a dependent set. The coefficients of the linear combination correspond to
the values of the nonzero components of the null vector. A minimal dependent set of
columns of A4 is a circuit. We proved that only null vectors that correspond to circuits
could be columns in a sparsest null basis.

Sparsest null bases were characterized by a greedy algorithm that augmented a partial
basis by a sparsest null vector independent of those previously chosen. Despite this result,
finding a sparsest null basis is computationally an intractable problem since it is
NP-hard. Computing a sparsest fundamental null basis is also NP-hard.

We addressed the question if sparsest null bases could be characterized to have some
particular zero-nonzero structure (structure). It is known that a sparsest null basis may
not be fundamental. We showed that a set of k vectors is linearly independent for all
possible numeric values of its nonzeros if and only if it has an embedded upper triangular
matrix of dimension k. Yet we do not know if we can always restrict a sparsest basis to
be triangular. Nevertheless, restriction of the structures to fundamental and triangular
bases makes it easy to ensure linear independence of the null vectors.

The relation between a triangular and a fundamental basis is an interesting one.
Since a triangular null basis has the structure in (1.2), if 4 is partitioned to conform to
N as A = (MS), then we have B = —M ~'SU, _,. Hence

-M~'S
N= U,_,.
( I ) ‘

Thus a triangular basis is obtained from a fundamental basis by postmultiplying with an
upper triangular matrix. From matrix algebra alone, it is hard to see that triangular bases
can be sparser than fundamental bases. The results in this paper show that judiciously
constructed, they are sparser.

Outline of this paper. In this paper we report on the design and implementation of
algorithms to compute fundamental and triangular null bases. A null basis is computed
by repeatedly executing an algorithm to compute a null vector. Since sparsest null bases
are characterized by the greedy algorithm, a heuristic strategy of computing the basis by
repeatedly finding sparse null vectors is justified.

The algorithm to compute a null vector has two phases: in the first combinatorial
phase, we identify the nonzero positions in the null vector. The nonzeros in each null
vector corresponds to columns of 4 in a circuit. In a second numeric phase, numeric
values of the nonzeros are computed.

In § 2 we design a circuit algorithm that finds a dependent set from a maximum
matching of A. If the matrix satisfies a nondegeneracy assumption called the weak Haar
property, then this dependent set is a circuit. We also show that any circuit of 4 can be
found from an appropriate matching. The matching theory needed to understand this
paper is introduced as needed in this section.

We use the circuit algorithm to find a fundamental null basis in § 3. All circuits in
a fundamental basis are computed from one fixed matching in the matrix. We report on
an implementation and on our computational results.
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Section 4 describes the triangular algorithm to compute triangular null bases. Here
a modified circuit algorithm which chooses columns to add to a start column such that
a sparse circuit is obtained is used to find circuits. The algorithm is guided in its choice
of columns by a matching which is constructed simultaneously. Thus each circuit is
obtained from a separate matching.

Ensuring the correctness of the triangular algorithm is a subtle issue that involves
some matching theory; we prove that if a complete matching is maintained in the nonstart
columns in the matrix, correctness can be assured. This “outer” matching is distinct
from the matching from which a circuit is obtained.

In § 5 an implementation of the triangular algorithm is described and our results
are discussed. We compare our results with the results of Gilbert and Heath (1987).

In § 6 we list some results on sparse orthogonal null bases we have obtained in
Coleman and Pothen (1986b), summarize our work, and make some additional remarks.

By convention a term is in slanted font when it is being defined. We also denote
the set operations 4 U {b}, A\{b}, and AU {b}\{c} by A+ b, 4 — b,and 4 + b — c,
respectively.

2. A circuit algorithm. A sparse null vector is computed in two phases. In the first
phase, a circuit is identified from a matching in the matrix. In the second phase, the
nonzero coefficients of a null vector are computed by solving a system of equations. We
proceed to introduce the matching theory needed to design a circuit algorithm.

The bipartite graph G(A) of the matrix 4 has a row vertex corresponding to each
row of 4, and a column vertex corresponding to each column of 4. An edge joins a row
vertex to a column vertex if and only if the corresponding matrix element is nonzero.
The structure of a matrix and its bipartite graph are shown in Fig. 2.1. The symbols “X”’,
and “®” denote nonzeros; the rest are zeros.

A matching in A is a set of nonzeros of 4 such that no two elements in the set are
chosen from the same column or the same row. A matching of 4 corresponds in G(A4)
to a set of edges no two of which are incident on a common vertex. A matching in the
matrix of Fig. 2.1 is shown by circled nonzero elements; in the bipartite graph the edges
in the matching are drawn with thick lines. A vertex is matched if it is an endpoint of
an edge in a matching. A vertex that is not matched is unmatched. The matching .# in
the figure has maximum cardinality, and hence is a maximum matching of A. The match-

a
a b ¢ d e f
1 x 0 ® 0 0 f
2 0
® X X b
3\0 0 0 ® x
d 1
¢ 2
e 3
X Y

FIG. 2.1. The structure of a matrix, its bipartite graph, and a matching.
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ing number, m(A), is the cardinality of a maximum matching of A. A matching in which
all the rows are matched is a complete (row-perfect) matching in 4. A matching in which
all rows and columns are matched is a perfect matching.

There exist several polynomial time algorithms to find maximum matchings
in bipartite graphs. Let 7 denote the number of nonzeros in 4. The theoretically
fastest known algorithm is due to Hopcroft and Karp (1973), and has time complex-
ity O(t'*7). Duff (1981) prefers an O(tr) algorithm which he finds is faster in prac-
tice. Good discussions of matching algorithms may be found in Papadimitriou and
Steiglitz (1982), and Lawler (1976).

The following two propositions are well known; Bondy and Murty (1976) have a
proof of the first. The matrix 4 has the Hall Property (HP) if every subset of its rows has
nonzeros in at least as many columns.

PROPOSITION 2.1 (Philip Hall). A4 has a complete matching if and only if it has the
Hall property.

PROPOSITION 2.2. The matching number of a matrix is greater than or equal to
its rank.

From Proposition 2.2, a matrix with rank ¢ has a complete matching. A stronger
condition on A4 is the Strong Hall Property (SHP). The matrix 4 has the Strong Hall
property if every subset of 0 < k < n rows has nonzeros in at least kK + 1 columns. (Thus
when 7 < n, every set of k = ¢ rows has nonzeros in k + 1 columns, and when ¢ = n,
every set of k < n rows has nonzeros in kK + 1 columns.) SHP is the same property
as irreducibility. The terms HP and SHP are due to Coleman, Edenbrandt and Gil-
bert (1986).

A complete matching .# of A4 partitions the columns of 4 into two sets: M, the set
of matched columns, and U, the set of unmatched columns. In Fig. 2.1, M = {c, d, e}
and U = {a, £, b}. We now show that for a column u € U, we can construct a circuit of
A containing u by an “alternating path algorithm.”

A path in a graph is a sequence of distinct vertices v, - - - , Uk, where (v;—1, v;) is
an edge of the graph, for 1 < i = k. An .#-alternating path is a path whose edges are
alternately chosen from the matching . and outside .#. In Fig. 2.1 the sequence of
edges (b, 1), (1, d), (d, 2), (2, ¢) is an #-alternating path in 4. Wﬁ say that ¢ and d are
reachable from b by .#-alternating paths, and indicate this by b = cand b = d.

An augmenting path is an alternating path which begins and ends with unmatched
vertices. By making matched edges along an augmenting path unmatched, and vice versa,
the size of the matching can be increased by one.

For u € U, the following algorithm constructs a dependent set n(u) containing u;
this is a circuit if 4 has the Weak Haar Property (WHP). A matrix has the weak Haar
property if every set of columns C satisfies rank (C) = m(C). This assumption ensures
that n(u) will be a circuit for all “general” numeric values of the columns of 4. For a
particular set of numeric values of the nonzeros of 4, numerical cancellations may occur,
in which case the set n(u) will contain a circuit. (The definitions of HP, SHP and WHP
are tabulated in Table 1 for easy reference.)

TABLE 1
Summary of properties.

Hall Property (HP) every subset of k rows has nonzeros in at least k columns
Strong Hall Property (SHP) every subset of k rows has nonzeros in at least k + 1 columns
Weak Haar Property (WHP) every subset of columns C has m(C) = rank (C)
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THE CIRCUIT ALGORITHM. Given a matrix A with WHP, a complete matching .#,
and an unmatched column u € U, this algorithm finds a circuit 7 ().
Follow all .#-alternating patlllg from u, adding columns visited to n(u).
Thus n(u) =u+ {veM:u—> v}

From Fig. 2.1 it is easy to see that n(a) = {a, d, ¢}, n(b) = {b, d, ¢}, and n(f) =
{/, ¢, e}. The set n(u) can be constructed in O(r) time by a depth first search.

THEOREM 2.3. The set of columns n(u) is a circuit if A has WHP.

Proof. Let C be the set of columns in the dependent set 7(u), and let C have nonzeros
only in the row set R. For ease of notation, denote by B the submatrix Agc.

We first show that B has SHP. Consider any subset .S of k rows of B. S is matched
in A to k columns, all of which are in C. If the unmatched column u has a nonzero in
any of the rows in S, then S has nonzeros in at least kK + 1 columns.

Suppose that # has no nonzero in S. Since rows in .S are reachable from u by
A -alternating paths, there must exist a column, matched to a row outside S, with a
nonzero in S. Again, S has nonzeros in at least k + 1 columns.

Let b be any column in B. Since B has SHP, B — b has HP. By Proposition 2.1,
B — b has a complete matching of size |R|. Since 4 has WHP, the rank of B — b is
|R|, and so the columns in B — b are independent. Since B is dependent, it follows that
n(u) is a circuit. O v

Let C denote the submatrix of columns in C — u and rows in R, and let @ denote
the components of u corresponding to rows in R. The coefficients of the null vector can
be computed by solving

Cx= -,
and then choosing

1 if i corresponds to u,

x; ifi corresponds to a column in C,
n(u);=
0 otherwise.

Suppose that C does not have WHP. Since it has a perfect matching by construction,
it is rank deficient. Hence it may not be possible to express i as a linear combination of
columns in C. In this case, the coefficient of u in the null vector is zero, and we say that
the dependence in n(u) does not involve u. However, it is possible to choose a column m
which has a nonzero coefficient in the null vector. Thus a null vector 7(m) with a nonzero
component corresponding to m is obtained.

COROLLARY 2.4. If n(u) does not have WHP, it contains a circuit which can be
identified by a numeric factorization. O

We now prove that the converse of Theorem 2.3 is true.

THEOREM 2.5. Every circuit of a matrix A with WHP can be constructed by the
circuit algorithm from some maximum matching M of A.

Proof. Let C be the set of columns in a circuit, and let R and B be as in the proof
of Theorem 2.3. Denote |C| by ¢, and distinguish any one column of B as u. We claim
B — u has HP.

Suppose not. Then R has a subset of k rows adjacent to fewer than k columns, for
some k. The columns and rows of the submatrix B can be permuted to the structure in
Fig. 2.2. The submatrix B then contains a dependent set of columns of size ¢ — k, violating
the minimality of C. Hence B — u has HP, and by Proposition 2.1, it has a complete
matching .#,. Partition 4 as shown in Fig. 2.3.
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u <k >c—k
k 0
c—k-1
F1G. 2.2. The submatrix B.
u C 15}
R
R |o 0

FIG. 2.3. A partition of A.

In any matching of 4, the row set R can match only to the column set C. Let #,
be a maximum matching of the submatrix Az¢. The required maximum matching is
M) M,y O

3. Fundamental null bases. We now develop an algorithm to compute fundamental
null bases using the circuit algorithm.

THE FUNDAMENTAL ALGORITHM.

1. [initialize] Let N be the empty set;

2. [match]
Find a complete matching .# of 4;
partition the columns: 4 = (MU);

3. [construct basis]

foreachue U —

construct 7(u) by the circuit algorithm;
solve for the coefficients in n(u);
Augment the null basis N with the computed null vector;
rof

When 4 has WHP, by Theorem 2.3, each set n(u) is a circuit. Further, since an
unmatched column u is contained only in the circuit n(u) by construction, N is a fun-
damental null basis. Thus the algorithm is correct in this case.

Step 3 of the fundamental algorithm can be modified to reduce its complexity. With
the partition 4 = (MU ), the fundamental basis has the structure in equation (1.1), where

= —M ~'U. Thus when M has full rank, the coefficients of each null vector n(u)can
be obtained by solving a system of the form Mx = —u. Hence we do not need to identify
columns in n(u) by following alternating paths. Also, the (n — f) matrix factorizations
can be replaced by one.
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This observation also shows that when 4 does not have WHP, the algorithm can
fail to compute all the (n — ?) linearly independent null vectors in a basis. Corresponding
to each fundamental basis, there is an associated partition of the columns of 4 into
M and U. Since B satisfies the equation MB = —U, when M does not have full rank,
it may not be possible to express a column  as a linear combination of the columns
in M.

Thus when A does not have WHP, a fundamental basis can be computed only when
M has full rank. Hence we choose M by a matching, but ensure that M has full rank
when we factor it to compute the null vectors. If it is rank-deficient, we reject the dependent
columns in M from the matching, and find a new maximum matching. This strategy
will ensure correctness; and will always succeed when A has full row rank.

For some of the problems reported here, the submatrix M chosen by a matching
was indeed rank deficient. The number of dependent columns was almost always equal
to one or two out of a few hundred columns; the largest we observed was five.

Details of implementation. Since computing a sparsest fundamental null basis is
NP-hard, heuristic strategies have to be employed to find sparse bases. Our strategy is to
assign costs to the columns of 4, and to choose a column of minimum cost to match to
a row.

The cost of a column c¢ is the number of nonzeros in it. To justify this, observe that
for a matrix with WHP, the number of nonzero rows in a circuit is one smaller than its
number of columns. Thus a sparse circuit has few nonzero rows. Hence the cost of a
column c indicates that any circuit containing ¢ must have at least this number of ad-
ditional matched columns in it. The cost of a matching is the sum of the costs of the
matched columns. Ties were broken in favor of lower numbered columns.

Our weighted maximum matching routine is derived from MC21A, Duff’s algorithm
for finding a maximum matching in a matrix (Duff (1977)). A maximum matching is
obtained by matching the rows one by one. At one step of the matching algorithm, we
search for a column to match to an unmatched row. From the given row, a depth first
search is performed through alternating paths to visit every unmatched column that
could be reached by such a path. The cheapest of these columns is chosen.

The solution of the linear systems to compute the coefficients of the null vector is
accomplished by using the LUSOL package of Gill, Murray, Saunders and Wright (1986).
This package is presently a part of MINOS (Murtagh and Saunders (1983)). The LUSOL
routines draw on the work of Reid (1976), (1982) on sparse LU factorizations of unsym-
metric matrices. Gaussian elimination with row and column pivoting is performed such
that M = LU, where the matrix PLP' is lower triangular, PUQ is upper triangular, and
P, Q are permutation matrices. Markowitz’s criterion is used to select the pivot element,
subject to a bound on the size of elements in L for numerical stability. Two triangular
systems are solved to compute the null vector from the factors; we call this a solve.
Parameters in LUSOL were set at their default values.

The matching algorithm has complexity O(z7); Duff (1981) reports an O(f) + O(7)
experimental behavior. Since the dimension of M is ¢, the cost of factoring it in step 3
could be O(t%), and the (n — ¢) solves could cost O((n — 1)t?) operations. However,
since M is sparse, a more realistic cost should be about O(t 2) for the factorization and
O((n — t)?) for the solves.

Storage requirements of the algorithm are dominated by the storage required for 4
and the null basis N. The matrix A4 is stored in Sparspak column oriented data structures
(George and Liu (1981)). Nonzeros and row indices are stored in column major order.
For the use of matching routines, column indices of the nonzeros are stored in row major
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order. These require a double precision array of length 7, two integer arrays of length 7,
and integer arrays of length n + 1 and ¢ + 1. Let 7(M ) denote the number of nonzeros
in M, this is smaller than 7. LUSOL needs the submatrix M stored as an element list
with parallel integer arrays for row and column indices. The factorization is stored in
the data structure for M, for which a minimum length of (M) + 4t is recommended.
The null basis N is stored in Sparspak column oriented data structures of length equal
to the number of nonzeros in the basis.

Results. We implemented the fundamental algorithm in FORTRAN 77; our ex-
perimental code, BASIS, is structured and modular, and we believe it represents a careful
and efficient implementation. The program was run on a VAX 11/780 (with floating
point coprocessor) under Berkeley 4.2 Unix at Penn State’s Computer Science Depart-
ment. The £77 compiler was used to compile the code.

Constraint matrices from linear programming problems were used for tests, and are
shown in Table 2. The first, murty, was taken from Murty (1983), and all the others were
supplied to us by Dr. Michael Saunders. The nonzero matrix elements were stored in
double precision. Our results are tabulated in Table 3. The algorithm found bases com-
parable in sparsity to the input matrices for all problems except brandy, for which there
was a four fold increase in density. This seems to be caused by the restriction to funda-
mental bases, as will be seen in the next section.

The total time (seconds) reported includes the time needed to find a maximum
matching, compute the LU factors of M, and solve for the null vectors. The matchings
were found quite fast, and the relatively larger times for the problems brandy, capri and
etamacro were caused by dependence in M which necessitated finding a second matching.
This step can be speeded up if the current matching is updated instead of finding a new
matching as we have done.

Both murty and israel had embedded identity matrices of dimension ¢; thus these
null bases were anomalously easy to find. The times reported for these problems should
therefore be considered low.

The time for the factorization phase was surprisingly low. This is due to the high
sparsity in M as a result of the column selection strategy in the matching algorithm, and
the efficient method for computing sparse factors via LUSOL. Solving for the coefficients
accounted for most of the time needed by the algorithm; solving for each null vector
took less than a tenth of a second, but the large number of null vectors caused the large

TABLE 2
Test problems.
Problem Rows Cols Nonzeros Density (%)
murty 12 30 56 15.6
afiro 27 51 102 7.4
adlittle 56 138 424 5.5
share2b 96 162 777 5.0
sharelb 117 253 1179 4.0
beaconfd 173 295 3408 6.7
israel 174 316 2443 44
brandy 193 303 2202 3.8
€226 223 472 2768 2.6
capri 271 482 1896 1.5
bandm 305 472 2494 1.7
stair 356 614 4013 1.8
etamacro 400 816 2537 0.8
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TABLE 3
Fundamental null bases.
Null basis Time (seconds)

Problem Rows Cols Nonzeros Density (%) Total Match Factor Solve
murty 30 18 62 11.5 0.6 .02 .07 0.5
afiro 51 24 112 9.2 0.9 .05 .08 0.8
adlittle 138 82 500 4.4 35 .07 0.2 3.2
share2b 162 66 736 6.9 4.6 0.1 1.0 4.0
sharelb 253 136 2264 6.6 13.7 0.7 1.7 11.3
beaconfd 295 122 1789 5.0 13.9 0.7 1.1 119
israel 316 142 2411 5.4 12.1 .02 0.4 11.6
brandy 303 110 4758 14.3 228 1.8 23 18.6
€226 472 249 3449 29 20.3 0.3 0.6 19.2
capri 482 211 3478 34 27.6 4.5 25 20.3
bandm 472 167 2306 29 19.5 0.7 0.1 17.4
stair 614 258 5378 34 35.7 1.2 1.2 33.2
etamacro 816 416 3929 1.2 39.1 2.8 2.5 33.8

time requirement. We conclude also that the numerical phase of the algorithm dominates
the combinatorial phase in computational time required.

The numerical quality of each null vector was checked by computing the residual
of the system of equations used to find a null vector. In all cases, this was below machine
precision. Condition numbers were estimated for constraint matrices and null bases of
the first eight problems in Table 2 by the LINPACK condition estimator. The estimates
for the null bases were lower than the estimates for the constraint matrices, except for
sharelb; here the null basis had a condition estimate of approximately 109, about ten
times that of the constraint matrix.

4. The triangular algorithm. We now describe the triangular algorithm that com-
putes a triangular null basis by matching. The diagonal elements of the triangular basis
correspond to a set of n — ¢ start columns in A. The algorithm computes a circuit containing
each start column. Linear independence of the set of circuits follows from the structure
of N.

Throughout this section we do not assume that 4 has WHP; hence the set n(u)
found from a matching will not necessarily be a circuit, but only a dependent set. The
corresponding null vector may not have a nonzero coefficient corresponding to u. By a
null vector n(u) we mean a null vector with a nonzero component corresponding to u.
In the description of the triangular algorithm, the remedial actions necessary in the absence
of WHP are included.

THE TRIANGULAR ALGORITHM. Given a complete matching .# in a matrix 4, and
a partition into matched columns M and unmatched columns U, this algorithm computes
a triangular null basis N. The set S is the set of columns which have already been used
as start columns.

S:=;

while U # S do
Choose a column u € U — S
Construct the dependent set #(x) from columns in 4 — S
Solve for the corresponding null vector;
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if dependence involves u
then { the null vector is n(u)}
S: =8+ u, N:= N+ n(u),
else {u has a zero coefficient in the null vector}
find a column m involved in the dependence;
Let n(m) be the associated null vector;
S:=8S+m;N:=N+ n(m),
if m € M then {update the matching .#}
let  be the row matched to m;
M =M~ (r, m);
Augment . by matching r
to a column in 4 — S;
Let v be the newly matched

column;
M=M-m+v,U:=U+
m— v
fi
fi
od
Description of the algorithm. Let S = {5, -- -, 5;,_,} be a set of start columns for
which null vectors {n(s,), - - - , n(s;— )} have been computed. Columns in S will not be

used in any of the null vectors to be computed in the future. The triangular algorithm
maintains the invariant that 4 — S has a complete matching .#. (This matching may
change in the course of the algorithm.) The matching .# partitions the columns of 4
into a set M of matched columns and a set U of unmatched columns, and S'< U.

There is a great deal of freedom in how a dependent set #(u) is constructed in this
algorithm. As in the fundamental algorithm, we could employ the circuit algorithm
to find n(u) from the matching . Or, we could find n(u) from another matching in
A — S, with a view toward obtaining a sparse null vector. Indeed, we choose to do
the latter.

Later in this section, we present a modified circuit algorithm that, given u, forms
n(u) by choosing columns in 4 — S by simultaneously constructing a matching in 7(u).
This matching is different from the complete matching .#. Thus for each start column
u, a different matching in 4 — S'is constructed. This permits more intelligent choices in
the column selection strategy to achieve sparsity. It is still essential to maintain a complete
matching .# in A — S to ensure the correctness of the triangular algorithm.

Initially the complete matching .# partitions the columns into M and U, and S is
empty. For a column u € U — S, a dependent set n(u) is constructed by a matching
algorithm from the columns in 4 — S. The corresponding null vector is computed as
described in § 2, by a numeric factorization. If u is involved in the dependence, then N
is augmented with the vector n(u), and u is added to the set S. Otherwise, we can identify
a column m with a nonzero coefficient in the null vector, and we obtain a null vector
n(m). The column m is added to the set S, and N is augmented with the vector n(m).

If m € M, then the row r matched to m in . has to be matched to another column
in 4 — S to maintain the invariant. This is accomplished by augmenting .# — (r, m) to
a complete matching, and updating the sets M and U.

It is easily seen that a triangular basis is obtained if the null vectors are arranged in
the reverse order in which they are computed.

The modified circuit algorithm. We describe the algorithm used to find the dependent
set n(u). The modified circuit algorithm is a variant of an algorithm proposed by Gilbert
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and Heath (1986), based on the matching theory developed in this paper. First, we describe
our version.

THE MODIFIED CIRCUIT ALGORITHM. Given a column u, this algorithm finds a
dependent set n(u). Here S is the set of start columns for which null vectors have been
computed by the triangular algorithm, C is the set of active columns, and R is the set of
active rows.

C:={u};

R := {rows in which u has nonzeros};

while there is an unmatched row r € R do
Find an augmenting path from an unmatched active row r to an
inactive column c€ 4 — S,
Augment by adding r and ¢ to the matching;

C:=CH+ {c};
R := R + {inactive rows in which ¢ has nonzeros};
od

This algorithm identifies an active submatrix formed from a set R of active rows
and a set C of active columns such that Axcis dependent. Initially, the only active column
is the column u, and the active rows are the rows in which u has nonzeros. A queue of
active rows is maintained by the algorithm. At each step, a column is chosen to match
to a row in the queue. The column is added to the set of active columns, and inactive
rows in which the column has nonzeros are made active and added to the queue. At
termination the active rows are perfectly matched to the active columns (excluding u).
If n(u) has WHP, by Theorem 2.3, the active columns form a circuit.

Assume that in case of failure to find a column ¢ to match to a row, the modified
circuit algorithm terminates. We can prove that this will not happen; i.e., the modified
circuit algorithm will not terminate without finding a dependent set n(u).

THEOREM 4.1. Let A — S have a complete matching # which partitions A into M
and U, with S < U. Then for a column u € U — S, the modified circuit algorithm will find
a dependent set n(u) containing columns from A — S.

Proof. 1f the algorithm succeeds in finding a column to match, the size of C increases
by one in each iteration of the while loop. If it fails, the algorithm terminates. In either
case, termination is assured.

If all rows in R are matched at termination, then they are matched to columns in
C — u, and from Theorem 2.3, the columns in C form a dependent set. Hence assume
that the algorithm terminates with a matching ., which matches columns in C — u to
a subset of rows in R. Let R, = R denote the set of unmatched rows which cannot be
matched by finding augmenting paths.

Let .4, denote the edges in the complete matching .# incident on the rows in R.
By Theorem 4.1 of Lawler (1976, Chap. 5) (also Gale and Hoffman (1982)), it is possible
to find a matching .#; from 4, and .#, in which all rows in R and all columns in
C — u are matched. Thus it is possible to augment the matching .4, by matching rows
in R,, and this is a contradiction. a

Correctness of the triangular algorithm. We establish the correctness of triangular
algorithm next. In view of Theorem 4.1, we need prove only that it is possible to maintain
the invariant of the algorithm, after a start column is.chosen and a null vector is computed.

THEOREM 4.2. Let1 = i=n—t,and S = {s;, --- , si—1} be a set of start columns
Jfor which null vectors n(sy), - - - , n(s; - ) have been computed. Let A — S have a complete
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matching M. There exists a column s; € A — S from which the triangular algorithm
computes a null vector n(s;) from the columns in A — S, such that A — (S U s;) has a
complete matching.

Proof. The modified circuit algorithm finds a dependent set n(u) from any column
u which is unmatched in .. If the dependence involves u, then s; := u, and the result
is true. Otherwise, let m be a column in n(u) involved in the dependence. Now s; := m,
and n(m) is the null vector obtained.

Let M denote the columns matched in .#, and U the unmatched columns. Denote
S U s; by S. To maintain the invariant, there are two cases to-consider.

Case 1. me U — S. Then M remains a completely matched set of columns in
A—S.

Case 2. m € M. In the matching found by the modified circuit algorithm, the set
of columns n(u) — u is perfectly matched to the set of rows in which 7n(u) has nonzeros.
Call this set of rows R. (See Fig. 4.1.) Then from the proof of Theorem 2.5, the set of
columns n(u) — m can be perfectly matched to R. Since n(u) — m < A — S, it is possible
to match all rows in R to columns in the latter set.

Let R denote the rest of the rows of 4. Then columns in n(u) have zeros in the rows
in R, and hence a row in R cannot, in any matching, match to any of these -columns.
Thus columns matched in 4 to rows in R are disjoint from columns in nw) —m. It
follows that all rows in this set can be matched to columns in 4 — S. Hence 4 — S has
a complete matching.

" Let r be the row matched in . to m. It follows from the correctness of the maximum
matching algorithm that .# — (r, m) can be augmented to a complete matching by
matching rtoacolumnin4 — S O

Gilbert and Heath use a version of the modified circuit algorithm as a component
in their matching algorithm (GHM) to find triangular bases. The major difference is that
they maintain a QR factorization of the active submatrix as each column is being added.
This helps them terminate the algorithm when a numerical dependence is detected, even
when all active rows have not been matched.

We find a dependent set by matching methods alone, and then solve for the coef-
ficients in the null vector by a sparse LU factorization of the submatrix Azc. There are
two advantages to such a choice. Since all the columns and rows in the dependent set
are known, the row and column ordering strategies of a sparse matrix factorization can
be used to keep the LU factors sparse. More important, a sparse matrix storage scheme
can be used to store the nonzeros in the factors, thus keeping intermediate storage
needed low.

n(u)
r——
S u m

)
=

FIG. 4.1. Proof of Theorem 4.2: Case 2.
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The triangular algorithm differs from GHM also in the strategy to select start columns.
They use an initial QR factorization of 4 to identify a set of dependent columns, which
is designated as the set of start columns. For each start column, they computed a null
vector containing it, and any dependences not involving the start column were rejected
to ensure that a basis was computed.

5. Computing triangular bases.

Implementation details. The initial matching .# in the triangular algorithm is chosen
by the column weighting strategy in § 3. The column u is chosen to be a column with
most nonzeros in U — S, since once this null vector is computed, u will not be used
again. The column m is chosen to be a column in U — S rather than in M, if possible,
since this saves the O(r) operations needed to update the matching. The column v is
chosen to be a column with fewest nonzeros in U — S that can augment the matching.

In the modified circuit algorithm, the column c is chosen to be an inactive column
of minimum cost. Here, the cost of a column c¢ is the number of nonzeros it has in the
inactive rows. Our heuristic justification is that this number of additional unmatched
rows are added to a circuit when c¢ is matched to an active row. In case of ties, two
different tie breaking strategies were tried: columns with fewer total nonzeros were favored
in one, and in the other, columns with most total nonzeros. The first strategy worked
better for almost all problems.

Each null vector is computed by the triangular algorithm from a perfect matching
in a submatrix of 4. Each submatrix can have ¢ rows and ¢ + 1 columns, and hence the
matching could cost O(tr). The associated factorization could cost O(t?). The actual cost
for each null vector should be lower since the number of rows in each submatrix should
be small due to sparsity. Storage requirements for the algorithm are similar to that of the
fundamental algorithm.

Results. An implementation of our algorithm in FORTRAN 77 forms the second
part of BASIS. We present our results (computed under the same conditions as for fun-
damental null bases) in Table 4.

The triangular null bases we obtained are consistently sparser than fundamental
bases. The increase in sparsity is most spectacular for brandy where the triangular basis
has about half the density of the latter. In all cases, the densities of the constraint matrices
and triangular null bases are comparable.

The time reported is the time (in seconds) needed to find a basis, given the matrix
stored in Sparspak data structures and an initial complete matching. The triangular
algorithm needs about two to five times the time needed by the fundamental algorithm.
This is caused primarily by the (n — f) matrix factorizations needed to compute the null
vectors. The size of most of the matrices to be factored is quite small since the null
vectors are sparse. Also, the LUSOL routines compute the sparse factorization efficiently.
This explains why the increased time requirement is not greater.

The residuals in the system of equations from which null vectors are computed were
always below machine precision. Condition numbers were -estimated as before for
the first eight problems in Table 2. These were all small, except for sharelb and brandy
(cond (N) =~ 10° for both); for the former the ratio cond (N)/cond (4) was about ten,
and for the latter about one hundred.

Comparison with the Gilbert-Heath algorithms. We have also run the triangular
algorithm on seven test problems shown in Table 5 from Gilbert and Heath (1987). Four
of these are equilibrium matrices from structural optimization, and three, Ip1, 1p2 and
1p3 are obtained from linear programs. The bases for the structural problems have a
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TABLE 4
Triangular null bases.
Null basis Time (seconds)
Problem Rows Cols Nonzeros Density (%) Total
murty 30 18 62 11.5 0.4
afiro 51 24 108 8.8 0.8
adlittle 138 82 486 4.3 3.6
share2b 162 66 686 6.4 5.0
sharelb 253 136 1425 4.1 19.8
beaconfd 295 122 1581 44 70.4
israel 316 142 2118 4.7 344
brandy 303 110 2535 7.6 91.8
€226 472 249 2742 2.3 57.4
capri 482 211 2850 2.8 50.3
bandm 472 167 1941 2.5 26.4
stair 614 258 5094 3.2 59.9
etamacro 816 416 3563 1.0 59.5

natural profile structure arising from the locality of the interconnections in the physical
structure, while the linear programs do not.

In Table 6, we compare the results from the triangular algorithm with results from
the Gilbert and Heath matching algorithm (GHM) and turnback algorithm {GHT). Their
code was executed on a reasonably similar setup to ours—a VAX 11/780 running the
same operating system and on the same compiler. However, we need to be cautious
about attaching too much significance to small differences in running times, since the
algorithms are not being compared on the same machine.

The storage reported is the intermediate storage required to obtain a null vector.
Two values are given for GHM and GHT. The dense storage reported is the maximum
dense matrix storage needed for the active submatrix. The profile storage reported is the
maximum storage that would be needed if a profile scheme is used to store the active
submatrix. The running times pertain to an implementation that uses dense storage. The
times (in seconds) in the Gilbert and Heath algorithms exclude the time needed for
column pre-ordering and the initial QR factorization.

For the triangular algorithm, the storage reported is the maximum number of non-
zeros in the L and U factors of the dependent set. We have not included the storage
required by the integer arrays needed for column and row indices of nonzeros. This is
quite small, since eight bytes are needed to store the nonzeros as double precision numbers,
and only two bytes are needed to keep an integer.

TABLE 5
Test problems from Gilbert and Heath (1987).
Problem Rows Cols Nonzeros Density (%)
frame2d 27 45 93 7.7
Ipl 57 97 465 84
frame3d 72 144 304 2.9
wheel 96 120 420 3.6
wrench 112 216 490 2.0
Ip2 118 225 1182 4.5
1p3 171 320 906 1.7
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TABLE 6
Results on problems from Gilbert and Heath (1987).
Gilbert and Heath Triangular Algorithm
Storage

Problem Algorithm Nonzeros Time Dense Profile Nonzeros Time Storage

frame2d matching 76 0.63 72 25 79 0.63 16
turnback 76 2.30 288 27

Ipl matching 367 10.50 1680 271 351 15.3 136
turnback 391 28.02 2550 597

frame3d matching 317 2.95 168 41 310 3.6 35
turnback 452 66.12 2064 104

wheel matching 488 10.45 756 273 518 5.5 103
turnback 503 17.32 1560 326

wrench matching 518 26.98 3782 266 588 31.8 139
turnback 544 58.38 5112 451

1p2 matching 1363 103.68 8160 1784 1379 39.1 680
turnback 1531 773.15 13570 8717

1p3 matching 1101 60.80 3540 697 1210 78.9 169
turnback 1518 288.87 10506 849

The storage reported is the intermediate storage required to compute a null vector. For the Gilbert and
Heath algorithms, the storage is the maximum size of the storage needed for the QR factors of the active
submatrix. The dense storage refers to a dense matrix storage scheme, and the profile storage, to a profile matrix
storage scheme. The reported times in GHM and GHT refer to the dense scheme. For the triangular algorithm,
the storage is the maximum number of nonzeros in the sparse L and U factors of the dependent set.

Conclusions. The following conclusions may be drawn. Within the context of struc-
tural analysis problems, the use of turnback with profile storage scheme is justified. Because
of the profile structure inherent in these null bases, the intermediate storage required is
not prohibitive.

The two matching algorithms, GHM and the triangular algorithm, require smaller
running times and less intermediate storage than turnback. The differences are greater
for the linear programs, but this observation is true even for the structural problems. For
instance, on Ip2, GHT requires about twenty times the running time of the triangular
algorithm, and more than twelve times the intermediate storage of the latter. We can
conclude that a matching algorithm should be preferred over turnback for computing
null bases of general sparse matrices.

Comparisons between GHM and the triangular algorithm are more difficult to make
with the available data. Use of a profile scheme is essential to keep the intermediate
storage from being prohibitive in GHM. However, the running times reported by Gilbert
and Heath are for the dense storage scheme.

Both the algorithms compute fairly sparse null bases. The intermediate storage re-
quired by the GHM profile algorithm is of the same order as the storage required by the
triangular algorithm. It is likely that the GHM profile algorithm will be a practical al-
gorithm to compute sparse null bases.

We believe our results show clearly that the triangular algorithm is an attractive
algorithm for large sparse null basis computations because of its low running times, small
storage requirements, and the high sparsity achieved in the null bases.



560 THOMAS F. COLEMAN AND ALEX POTHEN

6. Conclusions.

Sparse orthogonal null bases. In this section, we summarize some of our work on
orthogonal null bases that is not included here.

We have shown that the circuit algorithm can be used to compute orthogonal null
bases. By making use of the Dulmage-Mendelsohn decomposition of the square matched
submatrix, we have also provided some theoretical evidence that such bases are unlikely
to be sparse.

The computation of sparse orthogonal bases is further complicated by the fact that
a greedy strategy may backfire; Pothen (1984) gives a counterexample to show that not
choosing a sparsest null vector at a step can lead to a sparser orthogonal basis. In the
nonorthogonal situation, a sparsest basis is always obtained by a greedy strategy.

We have designed algorithms to compute sparsest orthogonal bases for two special
cases: a row vector of n elements, and a ¢ X n dense matrix. For the vector, the sparsest
basis has n|log, n] nonzeros, and for the matrix nt|log, n/t] nonzeros. These bases are
computed by a recursive divide and conquer strategy. Proving that these bases are sparsest
involves the solution of an interesting recurrence

fm)= min fk)+ f(n—k)+n,
1=sk=n-1

with f(1) = 1, and f(2) = 4. The reader can find the details in Pothen (1984) and Cole-
man and Pothen (1986b).

This algorithm has close connections with an algorithm to compute the orthog-
onal factorization on a distributed memory multiprocessor (Pothen, Jha and
Vemulapati (1987)).

Summary. We have shown that matchings can be used to identify dependent sets
of columns in a matrix, and thereby nonzeros in a null vector. These dependent sets are
formed by choosing a start column and adding columns to it, one by one. Matchings
help us in making good choices for columns to add so that a sparse null vector is obtained.
This is accomplished by weighting columns and choosing a column of minimum weight
to match to a row.

The resulting algorithms to compute null vectors have two phases: a combinatorial
phase, in which dependent sets are identified, and a numeric phase, in which the coef-
ficients of the null vector are computed. The time required for the second phase clearly
dominates that of the first.

We have also focused attention on the structures of the null bases we construct. To
ensure linear independence of the computed null vectors, the null bases are restricted to
be triangular or fundamental.

To compute a fundamental basis, we need to ensure that the matched submatrix
has full row rank. Only one sparse LU factorization of the matched submatrix and
(n — 1) solves are needed to compute the basis. However, since all the null vectors are
computed from a fixed initial matching, it is difficult to assign weights “globally” to
columns in an intelligent way.

For each null vector in a triangular basis, we need to find a perfect matching in a
submatrix, compute its LU factors, and perform a solve. In this case, a more intelligent
dynamic column weighting strategy (of the modified circuit algorithm) is possible to
ensure sparsity in each null vector.

Our computational results in Tables 3 and 4 demonstrate that both the fundamental
and triangular algorithms succeed in computing sparse null bases, and require low running
times and small intermediate storage. The triangular algorithm finds sparser bases at the
expense of greater running times.
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In Table 6, we compare the triangular algorithm with a turnback algorithm. The
former identifies columns in a dependent set combinatorially, while the latter uses an
orthogonal factorization. Consequently, the running times of the former are substantially
lower. The triangular algorithm chooses columns to add to a dependent set by means of
a combinatorial criterion to keep the set sparse, while turnback uses a numbering of the
columns. Hence the triangular algorithm finds sparser bases. Finally, the triangular al-
gorithm can use the column and row ordering schemes of a sparse LU factorization
routine to keep intermediate storage low. The turnback algorithm cannot do so, since
the columns in a dependent set are unknown before the completion of the orthogonal
factorization.

For structural analysis problems with a natural profile structure in the bases, use of
the turnback algorithm is justified. But for general sparse matrices, our results show that
a combinatorial phase is essential to keep running times and storage low.

The conditioning of the null bases seems to depend on the conditions of the constraint
matrices. When the latter were well-conditioned, the null bases were well-conditioned
also, and there was less than a ten fold increase in estimated condition numbers. For one
of the badly conditioned problems, the condition number increased a hundred fold.
Developing algorithms that can control the conditioning of the null bases is an important
open problem.

Additional remarks. Throughout this paper, we have assumed A4 has full row rank.
The triangular algorithm can be modified to work in the rank deficient situation also.
This can be done by rejecting unmatched rows in a maximum matching, since these are
structurally dependent rows. The algorithm can then proceed until all unmatched columns
have been used to compute null vectors. Then an LU factorization of M, the completely
matched submatrix, can be used to identify the rest of the dependent columns.

Both the triangular and fundamental algorithms compute null vectors in a dependent
set by computing LU factorizations; the LUSOL routines that do this have to decide
when a column should be declared dependent in the factorization. This is a rather difficult
numerical problem. Thus computing null bases is not immune from the difficulties as-
sociated with numerical rank determination.

The model of a circuit used by our algorithms is a submatrix with a complete
matching which has one nonzero column more than its number of nonzero rows. This
is appropriate when the matrix elements in 4 are “reasonably”’ random; hence, most
circuits satisfy the weak Haar property.

When 4 is the vertex-edge incidence matrix of a directed graph, a circuit corresponds
to a cycle in the graph, and a basis for the cycle space forms a null basis of 4. A cycle
has an equal number of nonzero columns and rows of the vertex-edge incidence matrix,
unlike the circuits in this paper. Our algorithms will work correctly in this situation;
however, sparser cycle bases could probably be obtained by a model that exploits this
additional “structure”.

Like vertex-edge incidence matrices of graphs, equilibrium matrices from structural
analysis have additional structure. Most circuits have the number of nonzero rows greater
than or equal to the number of nonzero-columns. By considering “equilibrium graphs,”
bipartite graphs of equilibrium matrices, it is possible to exploit the structure in these
problems, and to model circuits more accurately (Pothen (1986)). This approach yields
a new algorithm to compute null bases for equilibrium matrices. This equilibrium graph
algorithm succeeds in finding sparser bases faster than the triangular algorithm. In some
cases even sparsest null bases can be characterized.




562 THOMAS F. COLEMAN AND ALEX POTHEN

Computing sparse cycle bases is important in solving nonlinear programs with net-
work constraints (Dembo (1983)). Little is known about computing sparsest cycle bases.
Deo, Prabhu and Krishnamoorthy (1982) show that it is NP-complete to find sparsest
fundamental cycle bases, and have designed heuristic algorithms (with implementations
in Pascal) to find sparse fundamental bases.

Acknowledgments. Our thanks to John Gilbert and Mike Heath for sharing their
experiences in designing their null basis code which helped us with our implementation;
to Mike Saunders for sending the LUSOL package and the Ip test problems to us and
for being available with advice; and to the referees for their valuable suggestions to
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Note added in proof. An O(¢t3) algorithm has been designed to find the sparsest
cycle basis of a graph by J. D. Horton (1987).
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